Reg.No.:												7
----------	--	--	--	--	--	--	--	--	--	--	--	---

VIVEKANANDHA COLLEGE OF ENGINEERING FOR WOMEN

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam – 637 205, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 9028

M.E. / M.Tech. DEGREE END-SEMESTER EXAMINATIONS – JUNE / JULY 2024

Second Semester

Biotechnology

P23BTE20 - ADVANCED NANOBIOTECHNOLOGY

(Regulation 2023)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

Knowledge Levels	K1 – Remembering	K3 – Applying	K5 - Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

PART - A

		$(10 \times 2 = 20 \text{ Marks})$			
Q.No.	Questions	Marks	KL	CO	
1.	Compare and contrast physical and chemical methods for synthesizing nanomaterials.	2	K2	CO1	
2.	Outline the various techniques used for the characterization of nanomaterials.	2	K1	CO1	
3.	What are the primary differences between protein and glyco nanostructures?	2	K1	CO2	
4.	Mention two common methods for synthesizing lipid-based nanomaterials.	2	K1	CO2	
5.	How do nanomaterials contribute to cancer therapy?	2	K2	CO3	
6.	What are nano artificial cells?	2	K1	CO3	
7.	What is the significance of nanotechnology in point-of-care diagnostics?	2	K1	CO4	
8.	How do nanomaterials enter into cells?	2	K2	CO4	
9.	How do size, shape, surface properties, and composition influence the toxicity of nanomedicines?	2	K2	CO5	
10.	List out the methods used to assess the toxicity of nanomaterials in vitro.	2	K1	CO5	

PART – B

		(5×13)	= 65 N	(arks
Q.No.	Questions	Marks	KL	CO
11. a	Summarize the concept of bottom-up and top-down approaches in nanotechnology synthesis and discuss their advantages and limitations. (OR)	13	K3	CO1
b		8	K4	CO1
	ii. How do biological methods contribute to sustainability and eco-friendliness in nanotechnology?	5		CO1
12. a	Elucidate how molecular motors, DNA walkers, and enzyme-driven nanomachines operate at the nanoscale and their potential roles in drug delivery, biosensing, and nanorobotics.	13	К3	CO2
	(OR)			
b	· /	13	K3	CO2
13. a)	i. Illustrate the various types of nanomaterials employed in cancer diagnosis.	6	K3	CO3
	ii. Discuss the applications of nanotechnology in tissue engineering for regenerative medicine and organ transplantation.	7	K3	CO3
	(OR)			
b)	 Explain the concept of nano artificial cells and their potential applications in drug delivery, biosensing, and biocomputation. 	7	K4	CO3
	 Highlight recent advancements and challenges in the development of nanotechnology-enabled organ printing technologies for personalized medicine and organ transplantation. 	6	К3	CO3
14. a)	Illustrate how nanomaterials enable site-specific drug delivery, prolonged circulation time, and controlled release kinetics to improve therapeutic efficacy and minimize side effects.	13	К3	CO4

(OR)

	b)	i.	Describe the various cellular uptake mechanisms employed by nanomaterials.	7	K4	CO4
		ii.	Discuss the in-vitro methods employed to evaluate the antibacterial and anticancer properties of nanomaterials.	6	K5	CO4
15.	a)	i.	Discuss the methods and endpoints commonly used to evaluate nanotoxicity.	7	K4	CO5
		ii.	Evaluate the current challenges and future directions in nanotoxicology research for assessing the safety of nanomaterials in various applications.	6	K5	CO5
			(OR)			
	b)	-	are and contrast the toxicological profiles of various naterials studied in nanotoxicology.	13	K4	CO5
			PART – C			
				(1 x 1:	5 = 15	Marks)
Q.No.			Questions	Marks	KL	CO
16. a)		_	ow nature-inspired designs at the nanoscale can lead to e solutions in various industries. (OR)	15	K4	CO5

15

CO5

K4

b) Assess the current state of knowledge regarding the risk

on case studies.

assessment and regulatory considerations for nanomaterials based